Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(11): 2343-2348, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37870408

RESUMO

Adenylation enzymes activate amino acid substrates to aminoacyl adenylates and generally transfer this moiety onto the thiol group of the phosphopantetheine arm of a carrier protein for the selective incorporation of aminoacyl building blocks in natural product biosynthesis. In contrast to the canonical thioester-forming adenylation enzymes, the amide-forming adenylation enzyme VinM transfers an l-alanyl group onto the amino group of the aminoacyl unit attached to the phosphopantetheine arm of the carrier protein VinL to generate dipeptidyl-VinL in vicenistatin biosynthesis. It is unclear how VinM distinguishes aminoacyl-VinL from VinL for amide bond formation. Herein we describe structural and biochemical analyses of VinM. We determined the crystal structure of VinM in complex with VinL using a designed pantetheine-type cross-linking probe. The VinM-VinL complex structure in combination with site-directed mutagenesis analysis revealed that the interactions with both the phosphopantetheine arm and VinL are critical for the amide-forming activity of VinM.


Assuntos
Amidas , Aminoglicosídeos , Lactamas , Macrolídeos , Panteteína/análogos & derivados , Lactamas/química , Proteínas de Transporte/metabolismo , Peptídeo Sintases/metabolismo , Especificidade por Substrato
2.
Methods Mol Biol ; 2670: 207-217, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37184706

RESUMO

Adenylation domains (A-domains) are responsible for the selective incorporation of carboxylic acid substrates in the biosynthesis of nonribosomal peptides and related natural products. The A-domain transfers an acyl substrate onto its cognate carrier protein (CP). The proper interactions between an A-domain and the cognate CP are important for functional substrate transfer. To stabilize the transient interactions sufficiently for structural analysis of A-domain-CP complex, vinylsulfonamide adenosine inhibitors have been traditionally used as molecular probes. Recently, we have developed an alternative strategy using a synthetic pantetheine-type probe that enables site-specific cross-linking between an A-domain and a CP. In this chapter, we describe the laboratory protocols for this cross-linking reaction.


Assuntos
Proteínas de Transporte , Panteteína , Proteínas de Transporte/química , Panteteína/metabolismo , Peptídeo Sintases/química , Peptídeos/metabolismo
3.
ACS Chem Biol ; 18(6): 1398-1404, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37216195

RESUMO

Ketosynthase-like decarboxylase (KSQ) domains are widely distributed in the loading modules of modular type I polyketide synthases (PKSs) and catalyze the decarboxylation of the (alkyl-)malonyl unit bound to the acyl carrier protein (ACP) in the loading module for the construction of the PKS starter unit. Previously, we performed a structural and functional analysis of the GfsA KSQ domain involved in the biosynthesis of macrolide antibiotic FD-891. We furthermore revealed the recognition mechanism for the malonic acid thioester moiety of the malonyl-GfsA loading module ACP (ACPL) as a substrate. However, the exact recognition mechanism for the GfsA ACPL moiety remains unclear. Here, we present a structural basis for the interactions between the GfsA KSQ domain and GfsA ACPL. We determined the crystal structure of the GfsA KSQ-acyltransferase (AT) didomain in complex with ACPL (ACPL=KSQAT complex) by using a pantetheine crosslinking probe. We identified the key amino acid residues involved in the KSQ domain-ACPL interactions and confirmed the importance of these residues by mutational analysis. The binding mode of ACPL to the GfsA KSQ domain is similar to that of ACP to the ketosynthase domain in modular type I PKSs. Furthermore, comparing the ACPL=KSQAT complex structure with other full-length PKS module structures provides important insights into the overall architectures and conformational dynamics of the type I PKS modules.


Assuntos
Carboxiliases , Policetídeo Sintases , Policetídeo Sintases/metabolismo , Proteína de Transporte de Acila , Aciltransferases/química , Antibacterianos , Carboxiliases/metabolismo
4.
ACS Chem Biol ; 18(4): 875-883, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36921345

RESUMO

Lyngbyapeptin B is a hybrid polyketide-nonribosomal peptide isolated from particular marine cyanobacteria. In this report, we carried out genome sequence analysis of a producer cyanobacterium Moorena bouillonii to understand the biosynthetic mechanisms that generate the unique structural features of lyngbyapeptin B, including the (E)-3-methoxy-2-butenoyl starter unit and the C-terminal thiazole moiety. We identified a putative lyngbyapeptin B biosynthetic (lynB) gene cluster comprising nine open reading frames that include two polyketide synthases (PKSs: LynB1 and LynB2), four nonribosomal peptide synthetases (NRPSs: LynB3, LynB4, LynB5, and LynB6), a putative nonheme diiron oxygenase (LynB7), a type II thioesterase (LynB8), and a hypothetical protein (LynB9). In vitro enzymatic analysis of LynB2 with methyltransferase (MT) and acyl carrier protein (ACP) domains revealed that the LynB2 MT domain (LynB2-MT) catalyzes O-methylation of the acetoacetyl-LynB2 ACP domain (LynB2-ACP) to yield (E)-3-methoxy-2-butenoyl-LynB2-ACP. In addition, in vitro enzymatic analysis of LynB7 revealed that LynB7 catalyzes the oxidative decarboxylation of (4R)-2-methyl-2-thiazoline-4-carboxylic acid to yield 2-methylthiazole in the presence of Fe2+ and molecular oxygen. This result indicates that LynB7 is responsible for the last post-NRPS modification to give the C-terminal thiazole moiety in lyngbyapeptin B biosynthesis. Overall, we identified and characterized a new marine cyanobacterial hybrid PKS-NRPS biosynthetic gene cluster for lyngbyapeptin B production, revealing two unique enzymatic logics.


Assuntos
Cianobactérias , Peptídeos , Policetídeos , Cianobactérias/química , Cianobactérias/genética , Cianobactérias/metabolismo , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/química , Tiazóis/metabolismo
5.
Chembiochem ; 24(6): e202200670, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602093

RESUMO

Streptomyces graminofaciens A-8890 produces two macrolide antibiotics, FD-891 and virustomycin A, both of which show significant biological activity. In this study, we identified the virustomycin A biosynthetic gene cluster, which encodes type I polyketide synthases (PKSs), ethylmalonyl-CoA biosynthetic enzymes, methoxymalony-acyl carrier protein biosynthetic enzymes, and post-PKS modification enzymes. Next, we demonstrated that the acyltransferase domain can be exchanged between the Vsm PKSs and the PKSs involved in FD-891 biosynthesis (Gfs PKSs), without any supply problems of the unique extender units. We exchanged the malonyltransferase domain in the loading module of Gfs PKS with the ethylmalonyltransferase domain and the methoxymalonyltransferase domain of Vsm PKSs. Consequently, the expected two-carbon-elongated analog 26-ethyl-FD-891 was successfully produced with a titer comparable to FD-891 production by the wild type; however, exchange with the methoxymalonyltransferase domain did not produce any FD-891 analogs. Furthermore, 26-ethyl-FD-891 showed potent cytotoxic activity against HeLa cells, like natural FD-891.


Assuntos
Aciltransferases , Policetídeo Sintases , Humanos , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Células HeLa , Macrolídeos/farmacologia , Macrolídeos/metabolismo , Antibacterianos/farmacologia
6.
Biochemistry ; 62(1): 17-21, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36512613

RESUMO

Acyltransferase (AT) recognizes its cognate acyl carrier protein (ACP) for functional transfer of an acyl unit in polyketide biosynthesis. However, structural characterization of AT-ACP complexes is limited because of the weak and transient interactions between them. In the biosynthesis of macrolactam polyketide vicenistatin, the trans-acting loading AT VinK transfers a dipeptidyl unit from the stand-alone ACP VinL to the ACP domain (VinP1ACPL) of the loading module of modular polyketide synthase VinP1. Although the previously determined structure of the VinK-VinL complex clearly illustrates the VinL recognition mechanism of VinK, how VinK recognizes VinP1ACPL remains unclear. Here, the crystal structure of a covalent VinK-VinP1ACPL complex formed with a pantetheine-type cross-linking probe is reported at 3.0 Å resolution. The structure of the VinK-VinP1ACPL complex provides detailed insights into the transient interactions between VinK and VinP1ACPL. The importance of residues in the binding interface was confirmed by site-directed mutational analyses. The binding interface between VinK and VinP1ACPL is similar to that between VinK and VinL, although some of the interface residues are different. However, the ACP orientation and interaction mode observed in the VinK-VinP1ACPL complex are different from those observed in other AT-ACP complexes such as the disorazole trans-AT-ACP complex and cis-AT-ACP complexes of modular polyketide synthases. Thus, AT-ACP binding interface interactions are different in each type of AT-ACP pair.


Assuntos
Policetídeo Sintases , Policetídeos , Policetídeo Sintases/química , Aciltransferases/química , Proteína de Transporte de Acila/metabolismo
7.
Org Lett ; 24(49): 8975-8979, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36458844

RESUMO

The radical S-adenosyl-l-methionine (SAM) methylase Orf29 catalyzes the C-methylation of SAM in the biosynthesis of 1-amino-2-methylcyclopropanecarboxylic acid. Here, we determined that the methylation product is (4″R)-4″-methyl-SAM. Furthermore, we found that the 5'-deoxyadenosyl radical generated by Orf29 abstracts the pro-R hydrogen atom from the C-4″ position of SAM to generate the radical intermediate, which reacts with methylcobalamin to give (4″R)-4″-methyl-SAM. Consequently, the Orf29-catalyzed C-methylation was confirmed to proceed with retention of configuration.


Assuntos
Metionina , S-Adenosilmetionina , Metilação , Metiltransferases/metabolismo , Racemetionina , S-Adenosilmetionina/metabolismo , Vitamina B 12
8.
Curr Opin Chem Biol ; 71: 102212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116190

RESUMO

Adenylation (A) domains catalyze the biosynthetic incorporation of acyl building blocks into nonribosomal peptides and related natural products by selectively transferring acyl substrates onto cognate carrier proteins (CP). The use of noncanonical acyl units, such as nonproteinogenic amino acids and keto acids, by A domains expands the structural diversity of natural products. Furthermore, interrupted A domains, which have embedded auxiliary domains, are able to modify the incorporated acyl units. Structural information on A domains is important for rational protein engineering to generate unnatural compounds. In this review, we summarize recent advances in the structural analysis of A domains. First, we discuss the mechanisms by which A domains recognize noncanonical acyl units. We then focus on the interactions of A domains with CP domains and embedded auxiliary domains.


Assuntos
Produtos Biológicos , Peptídeo Sintases , Peptídeo Sintases/metabolismo , Domínios Proteicos , Peptídeos/química , Aminoácidos
9.
Nat Prod Rep ; 39(8): 1622-1642, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35726901

RESUMO

Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.


Assuntos
Ciclitóis , Carboidratos , Ciclitóis/química , Ciclitóis/metabolismo
10.
Methods Enzymol ; 669: 45-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35644180

RESUMO

Fosfomycin is a clinically used broad-spectrum antibiotic that has the structure of an oxirane ring with a phosphonic acid substituent and a methyl substituent. In nature, fosfomycin is produced by Streptomyces spp. and Pseudomonas sp., but biosynthesis of fosfomycin significantly differs between the two bacteria, especially in the incorporation mechanism of the methyl group. It has been proposed that the cobalamin-dependent radical S-adenosyl-l-methionine (SAM) enzyme Fom3 is responsible for the methyl-transfer reaction in Streptomyces fosfomycin biosynthesis. In this chapter, we describe the experimental methods to characterize Fom3. We performed the methylation reaction with the purified recombinant Fom3, revealing that Fom3 recognizes a cytidylylated 2-hydroxyethylphosphonate as a substrate and catalyzes stereoselective methylation of the sp3 carbon at the C2 position to afford cytidylylated (S)-2-hydroxypropylphosphonate. Reaction analysis using deuterium-labeled substrates showed that the 5'-deoxyadenosyl radical generated by reductive cleavage of SAM stereoselectively abstracts the pro-R hydrogen atom of the CH bond at the C2 position of cytidylylated 2-hydroxyethylphosphonate. Therefore, the C-methylation reaction catalyzed by Fom3 proceeds with inversion of the configuration at the C2 position. Experimental methods to elucidate the chemical structures of the substrate and products and the stereochemical course in the Fom3-catalyzed reaction could give information to progress investigation of cobalamin-dependent radical SAM C-methyltransferases.


Assuntos
Fosfomicina , Streptomyces , Fosfomicina/química , Fosfomicina/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Streptomyces/metabolismo , Vitamina B 12/metabolismo
11.
ACS Chem Biol ; 17(1): 198-206, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34985877

RESUMO

Ketosynthase-like decarboxylase (KSQ) domains are widely distributed in the loading modules of modular polyketide synthases (PKSs) and are proposed to catalyze the decarboxylation of a malonyl or methylmalonyl unit for the construction of the PKS starter unit. KSQ domains have high sequence similarity to ketosynthase (KS) domains, which catalyze transacylation and decarboxylative condensation in polyketide and fatty acid biosynthesis, except that the catalytic Cys residue of KS domains is replaced by Gln in KSQ domains. Here, we present biochemical analyses of GfsA KSQ and CmiP4 KSQ, which are involved in the biosynthesis of FD-891 and cremimycin, respectively. In vitro analysis showed that these KSQ domains catalyze the decarboxylation of malonyl and methylmalonyl units. Furthermore, we determined the crystal structure of GfsA KSQ in complex with a malonyl thioester substrate analogue, which enabled identification of key amino acid residues involved in the decarboxylation reaction. The importance of these residues was confirmed by mutational analysis. On the basis of these findings, we propose a mechanism of the decarboxylation reaction catalyzed by GfsA KSQ. GfsA KSQ initiates decarboxylation by fixing the substrate in a suitable conformation for decarboxylation. The formation of enolate upon decarboxylation is assisted by two conserved threonine residues. Comparison of the structure of GfsA KSQ with those of KS domains suggests that the Gln residue in the active site of the KSQ domain mimics the acylated Cys residue in the active site of KS domains.


Assuntos
Carboxiliases/metabolismo , Policetídeo Sintases/metabolismo , Sequência de Aminoácidos , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Cristalização , Modelos Moleculares , Mutação , Policetídeo Sintases/química , Policetídeo Sintases/genética , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
12.
Biochemistry ; 60(38): 2865-2874, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34506710

RESUMO

Adenosylhopane is a crucial precursor of C35 hopanoids, which are believed to modulate the fluidity and permeability of bacterial cell membranes. Adenosylhopane is formed by a crosslinking reaction between diploptene and a 5'-deoxyadenosyl radical that is generated by the radical S-adenosyl-L-methionine (SAM) enzyme HpnH. We previously showed that HpnH from Streptomyces coelicolor A3(2) (ScHpnH) converts diploptene to (22R)-adenosylhopane. However, the mechanism of the stereoselective C-C bond formation was unclear. Thus, here, we performed biochemical and mutational analysis of another HpnH, from the ethanol-producing bacterium Zymomonas mobilis (ZmHpnH). Similar to ScHpnH, wild-type ZmHpnH afforded (22R)-adenosylhopane. Conserved cysteine and tyrosine residues were suggested as possible hydrogen sources to quench the putative radical reaction intermediate. A Cys106Ala mutant of ZmHpnH had one-fortieth the activity of the wild-type enzyme and yielded both (22R)- and (22S)-adenosylhopane along with some related byproducts. Radical trapping experiments with a spin-trapping agent supported the generation of a radical intermediate in the ZmHpnH-catalyzed reaction. We propose that the thiol of Cys106 stereoselectively reduces the radical intermediate generated at the C22 position by the addition of the 5'-deoxadenosyl radical to diploptene, to complete the reaction.


Assuntos
Adenosina/análogos & derivados , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Adenosina/biossíntese , Adenosina/genética , Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Catálise , Cisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Triterpenos/química , Zymomonas/metabolismo
13.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 9): 294-302, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473106

RESUMO

Acyltransferases are responsible for the selection and loading of acyl units onto carrier proteins in polyketide and fatty-acid biosynthesis. Despite the importance of protein-protein interactions between the acyltransferase and the carrier protein, structural information on acyltransferase-carrier protein interactions is limited because of the transient interactions between them. In the biosynthesis of the polyketide vicenistatin, the acyltransferase VinK recognizes the carrier protein VinL for the transfer of a dipeptidyl unit. The crystal structure of a VinK-VinL covalent complex formed with a 1,2-bismaleimidoethane cross-linking reagent has been determined previously. Here, the crystal structure of a VinK-VinL covalent complex formed with a pantetheine cross-linking probe is reported at 1.95 Šresolution. In the structure of the VinK-VinL-probe complex, the pantetheine probe that is attached to VinL is covalently connected to the side chain of the mutated Cys106 of VinK. The interaction interface between VinK and VinL is essentially the same in the two VinK-VinL complex structures, although the position of the pantetheine linker slightly differs. This structural observation suggests that interface interactions are not affected by the cross-linking strategy used.


Assuntos
Aciltransferases/química , Aciltransferases/metabolismo , Reagentes de Ligações Cruzadas/química , Panteteína/química , Panteteína/metabolismo , Domínios e Motivos de Interação entre Proteínas , Aciltransferases/genética , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Especificidade por Substrato
14.
ACS Chem Biol ; 16(3): 539-547, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33625847

RESUMO

Hitachimycin is a macrolactam antibiotic with an (S)-ß-phenylalanine (ß-Phe) at the starter position of its polyketide skeleton. (S)-ß-Phe is formed from l-α-phenylalanine by the phenylananine-2,3-aminomutase HitA in the hitachimycin biosynthetic pathway. In this study, we produced new hitachimycin analogs via mutasynthesis by feeding various (S)-ß-Phe analogs to a ΔhitA strain. We obtained six hitachimycin analogs with F at the ortho, meta, or para position and Cl, Br, or a CH3 group at the meta position of the phenyl moiety, as well as two hitachimycin analogs with thienyl substitutions. Furthermore, we carried out a biochemical and structural analysis of HitB, a ß-amino acid-selective adenylation enzyme that introduces (S)-ß-Phe into the hitachimycin biosynthetic pathway. The KM values of the incorporated (S)-ß-Phe analogs and natural (S)-ß-Phe were similar. However, the KM values of unincorporated (S)-ß-Phe analogs with Br and a CH3 group at the ortho or para position of the phenyl moiety were high, indicating that HitB functions as a gatekeeper to select macrolactam starter units during mutasynthesis. The crystal structure of HitB in complex with (S)-ß-3-Br-phenylalanine sulfamoyladenosine (ß-m-Br-Phe-SA) revealed that the bulky meta-Br group is accommodated by the conformational flexibility around Phe328, whose side chain is close to the meta position. The aromatic group of ß-m-Br-Phe-SA is surrounded by hydrophobic and aromatic residues, which appears to confer the conformational flexibility that enables HitB to accommodate the meta-substituted (S)-ß-Phe. The new hitachimycin analogs exhibited different levels of biological activity in HeLa cells and multidrug-sensitive budding yeast, suggesting that they may target different molecules.


Assuntos
Adenilato Quinase/química , Fenilalanina/química , Policetídeos/química , Proteínas Recombinantes/química , Adenilato Quinase/metabolismo , Sequência de Aminoácidos , Vias Biossintéticas , Halogênios/química , Células HeLa , Humanos , Cinética , Metano/química , Modelos Moleculares , Conformação Molecular , Mutação , Fenilalanina/metabolismo , Polienos/química , Polienos/metabolismo , Policetídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
15.
Biosci Biotechnol Biochem ; 85(1): 108-114, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33577648

RESUMO

2-Deoxy-scyllo-inosose (2DOI, [2S,3R,4S,5R]-2,3,4,5-tetrahydroxycyclohexan-1-one) is a biosynthetic intermediate of 2-deoxystreptamine-containing aminoglycoside antibiotics, including butirosin, kanamycin, and neomycin. In producer microorganisms, 2DOI is constructed from d-glucose 6-phosphate (G6P) by 2-deoxy-scyllo-inosose synthase (DOIS) with the oxidized form of nicotinamide adenine dinucleotide (NAD+). 2DOI is also known as a sustainable biomaterial for production of aromatic compounds and a chiral cyclohexane synthon. In this study, a one-pot enzymatic synthesis of 2DOI from d-glucose and polyphosphate was investigated. First, 3 polyphosphate glucokinases (PPGKs) were examined to produce G6P from d-glucose and polyphosphate. A PPGK derived from Corynebacterium glutamicum (cgPPGK) was found to be suitable for G6P production under ordinary enzymatic conditions. Next, 7 DOISs were examined for the one-pot enzymatic reaction. As a result, cgPPGK and BtrC, the latter of which is a DOIS derived from the butirosin producer Bacillus circulans, achieved nearly full conversion of d-glucose to 2DOI in the presence of polyphosphate.


Assuntos
Glucose/química , Inositol/análogos & derivados , Liases/metabolismo , Polifosfatos/química , Técnicas de Química Sintética , Inositol/síntese química , Inositol/química
16.
Chembiochem ; 22(9): 1668-1675, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33403742

RESUMO

Kanamycin A is the major 2-deoxystreptamine (2DOS)-containing aminoglycoside antibiotic produced by Streptomyces kanamyceticus. The 2DOS moiety is linked with 6-amino-6-deoxy-d-glucose (6ADG) at O-4 and 3-amino-3-deoxy-d-glucose at O-6. Because the 6ADG moiety is derived from d-glucosamine (GlcN), deamination at C-2 and introduction of C-6-NH2 are required in the biosynthesis. A dehydrogenase, KanQ, and an aminotransferase, KanB, are presumed to be responsible for the introduction of C-6-NH2 , although the substrates have not been identified. Here, we examined the substrate specificity of KanQ to better understand the biosynthetic pathway. It was found that KanQ oxidized kanamycin C more efficiently than the 3''-deamino derivative. Furthermore, the substrate specificity of an oxygenase, KanJ, that is responsible for deamination at C-2 of the GlcN moiety was examined, and the crystal structure of KanJ was determined. It was found that C-6-NH2 is important for substrate recognition by KanJ. Thus, the modification of the GlcN moiety occurs after pseudo-trisaccharide formation, followed by the introduction of C-6-NH2 by KanQ/KanB and deamination at C-2 by KanJ.


Assuntos
Antibacterianos/metabolismo , Canamicina/biossíntese , Polissacarídeos/química , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicosilação , Canamicina/análogos & derivados , Cinética , Oxirredutases/genética , Oxirredutases/metabolismo , Streptomyces/enzimologia , Especificidade por Substrato , Transaminases/genética , Transaminases/metabolismo
17.
ACS Chem Biol ; 15(7): 1808-1812, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32608966

RESUMO

Adenylation domains (A-domains) are responsible for selective incorporation of carboxylic acid substrates in the biosynthesis of various natural products. Each A-domain must recognize a cognate carrier protein (CP) for functional substrate transfer. The transient interactions between an A-domain and CP have been investigated by using acyl vinylsulfonamide adenosine inhibitors as probes to determine the structures of several A-domain-CP complexes. However, this strategy requires a specific vinylsulfonamide inhibitor that contains an acyl group corresponding to the substrate specificity of a target A-domain in every case. Here, we report an alternative strategy for structural characterization of A-domain-CP complexes. We used a bromoacetamide pantetheine cross-linking probe in combination with a Cys mutation to trap the standalone A-domain-CP complex involved in macrolactam polyketide biosynthesis through a covalent linkage, allowing the determination of the complex structure. This strategy facilitates the structural determination of A-domain-CP complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Reagentes de Ligações Cruzadas/química , Sondas Moleculares/química , Panteteína/análogos & derivados , Bactérias/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Domínios Proteicos
18.
J Antibiot (Tokyo) ; 73(11): 794-797, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32499555

RESUMO

The macrolactam antibiotic incednine, isolated from Streptomyces sp. ML694-90F3, contains a (S)-3-aminobutyric acid moiety in its polyketide aglycon. In this study, we performed mutasynthesis to generate incednine derivatives. We successfully obtained 28-methylincednine by feeding 3-aminopentanoic acid into culture of a strain in which the glutamate 2,3-aminomutase gene idnL4, whose product is responsible for supplying 3-aminobutyric acid, was disrupted. 28-Methylincednine showed similar suppressive activity of the antiapoptotic function of oncoprotein Bcl-xL to that of incednine. Thus, this study highlights the applicability of the mutasynthesis approach in generation of novel ß-amino acid-containing macrolactam polyketide derivatives.


Assuntos
Antibacterianos/biossíntese , Dissacarídeos/biossíntese , Lactamas/metabolismo , Antibacterianos/metabolismo , Dissacarídeos/metabolismo , Técnicas de Silenciamento de Genes , Redes e Vias Metabólicas , Policetídeos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Ácido Valproico/metabolismo
19.
Biomolecules ; 10(5)2020 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429436

RESUMO

Many pharmacologically important peptides are bacterial or fungal in origin and contain nonproteinogenic amino acid (NPA) building blocks. Recently, it was reported that, in bacteria, a cyclopropane-containing NPA 1-aminocyclopropanecarboxylic acid (ACC) is produced from the L-methionine moiety of S-adenosyl-L-methionine (SAM) by non-canonical ACC-forming enzymes. On the other hand, it has been suggested that a monomethylated ACC analogue, 2-methyl-ACC (MeACC), is derived from L-valine. Therefore, we have investigated the MeACC biosynthesis by identifying a gene cluster containing bacterial MeACC synthase genes. In this gene cluster, we identified two genes, orf29 and orf30, which encode a cobalamin (B12)-dependent radical SAM methyltransferase and a bacterial ACC synthase, respectively, and were found to be involved in the MeACC biosynthesis. In vitro analysis using their recombinant enzymes (rOrf29 and rOrf30) further revealed that the ACC structure of MeACC was derived from the L-methionine moiety of SAM, rather than L-valine. In addition, rOrf29 was found to catalyze the C-methylation of the L-methionine moiety of SAM. The resulting methylated derivative of SAM was then converted into MeACC by rOrf30. Thus, we demonstrate that C-methylation of SAM occurs prior to cyclopropanation in the biosynthesis of a bacterial MeACC (norcoronamic acid).


Assuntos
Aminoácidos/biossíntese , S-Adenosilmetionina/metabolismo , Streptomyces/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclopropanos , Liases/genética , Liases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
20.
Biochemistry ; 59(15): 1470-1473, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32237736

RESUMO

Kanosamine (3-amino-3-deoxy-d-glucose) is a characteristic sugar unit found in kanamycins, a group of aminoglycoside antibiotics. The kanosamine moiety originates from d-glucose in kanamycin biosynthesis. However, the timing of the replacement of the 3-OH group of the d-glucose-derived biosynthetic intermediate with the amino group is elusive. Comparison of biosynthetic gene clusters for related aminoglycoside antibiotics suggests that the nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase KanD2 and the pyridoxal 5'-phosphate (PLP)-dependent aminotransferase KanS2 are responsible for the introduction of the amino group at the C3 position of kanosamine. In this study, we demonstrated that KanD2 and KanS2 convert kanamycin A, B, and C to the corresponding 3″-deamino-3″-hydroxykanamycins (3″-hks) in the presence of PLP, 2-oxoglutarate, and NADH via a reverse reaction in the pathway. Furthermore, we observed that all of the 3″-hks are oxidized by KanD2 with NAD+, but d-glucose, UDP-d-glucose, d-glucose 6-phosphate, and d-glucose 1-phosphate are not. Crystal structure analysis of KanD2 complexed with 3″-hkB and NADH illustrated the selective recognition of pseudotrisaccharides, especially the d-glucose moiety with 2-deoxystreptamine, by a combination of hydrogen bonds and CH-π interactions. Overall, it was clarified that the kanosamine moiety of kanamycins is constructed after the glucosylation of the pseudodisaccharide biosynthetic intermediates in kanamycin biosynthesis.


Assuntos
Canamicina/biossíntese , Oxirredutases/metabolismo , Transaminases/metabolismo , Configuração de Carboidratos , Glucosamina/química , Glucosamina/metabolismo , Canamicina/química , Modelos Moleculares , Oxirredutases/química , Transaminases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...